A new matrix q-identity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SYMMETRICAL q - EULERIAN IDENTITY

We find a q-analog of the following symmetrical identity involving binomial coefficients ( n m ) and Eulerian numbers An,m, due to Chung, Graham and Knuth [J. Comb., 1 (2010), 29–38]: ∑ k≥0 ( a + b k ) Ak,a−1 = ∑ k≥0 ( a + b k ) Ak,b−1. We give two proofs, using generating function and bijections, respectively.

متن کامل

On a General $q$-identity

In this paper, by means of the q-Rice formula we obtain a general q-identity which is a unified generalization of three kinds of identities. Some known results are special cases of ours. Meanwhile, some identities on q-generalized harmonic numbers are also derived.

متن کامل

A new Q-matrix in the Eight-Vertex Model

We construct a Q-matrix for the eight-vertex model at roots of unity for crossing parameter η = 2mK/L with odd L, a case for which the existing constructions do not work. The new Q-matrix Q̂ depends on the spectral parameter v and also on a free parameter t. For t = 0 Q̂ has the standard properties. For t 6= 0, however, it does not commute with the operator S and not with itself for different val...

متن کامل

A q-Foata Proof of the q-Saalschütz Identity

Dominique Foata [2] [6] gave a beautiful combinatonal proof or the following binomial coefficients identity, that is trivially equivalent to the famous PfaCSaalschutz identity: a + b a + e b + c (a + b + r-n)! (a + k) (e + k) (h + k)

متن کامل

A NEW CHARACTERIZATION OF SIMPLE GROUP G 2 (q) WHERE q ⩽ 11

Let G be a finite group , in this paper using the order and largest element order of G we show that every finite group with the same order and largest element order as G 2 (q), where q 11 is necessarily isomorphic to the group G 2 (q)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1991

ISSN: 0097-3165

DOI: 10.1016/0097-3165(91)90066-p